Du suchst eine Frequenztabelle, die Dir verrät, welche Noten welche Frequenzen haben? Dann ist dieser Artikel genau richtig für Dich! In diesem werde ich Dir erklären, was ein Ton ist und was der Zusammenhang zwischen einer Note und einer Frequenz ist. Ganz unten findest Du auch eine Frequenztabelle im PDF-Format, die Du kostenlos downloaden kannst.
Vielleicht geht es Dir wie mir: Du spielst eine Taste auf dem Keyboard oder Klavier und fragst Dich: “Ob dieser Ton wohl eine bestimmte Frequenz hat?” Die Antwort lautet: Ja, jeder Ton besitzt eine genau definierte Frequenz. Um dies besser zu verstehen, müssen wir zunächst ein paar Begriffe klären.
Frequenz
Die Frequenz ist in der Physik ein Maß für die Anzahl der Schwingungen pro Sekunde. Sie wird in Hertz (Hz) angegeben. Und da Töne nichts Anderes als Schwingungen sind, besitzen auch sie eine Frequenz. Generell kann man sagen: Je mehr Schwingungen pro Sekunde ein Ton hat, desto höher ist seine Frequenz. Und je höher die Frequenz ist, desto höher ist der Ton. Ein Bass hat also demnach eine niedrige Frequenz und wenige Schwingungen pro Sekunde.
Kammerton 440 Hz vs. 432 Hz
OK. Aber wer legt jetzt fest, welcher Ton was für eine Frequenz hat? Um Instrumente zu stimmen, wurde das eingestrichene A auf 440 Hz festgelegt. Dieser Ton entspricht dem A3 auf der MIDI-Klaviatur. Man nennt diesen Ton auch “Kammerton”. Alle weiteren Töne lassen sich daraus errechnen, da eine weitere Regel besagt: Wenn man eine Frequenz verdoppelt, gelangt man eine Oktave nach oben. Demnach liegt das zweigestrichene A bei 880 Hz. Auf diese Weise lassen sich relativ einfach alle A-Noten berechnen. Tricky wird es jetzt mit den restlichen Tönen…
Übrigens gibt es noch eine Definition, bei der das eingestrichene A auf 432 Hz festgelegt ist. Diesen Frequenzen wird nachgesagt, dass sie angenehmer auf das Unterbewusstsein wirken. Hier kannst Du eine Tabelle herunterladen, bei der das A als 432 Hz definiert ist.
Darüber hinaus ist es auch möglich, seine Instrumente nach den sogenannten Solfeggio Frequenzen zu stimmen. Entsprechende Frequenztabellen findest Du hier.
Chromatische Tonleiter
Die chromatische Tonleiter besteht aus zwölf Tönen, die alle einen Halbtonschritt voneinander entfernt sind. Dies sind also alle weißen und schwarzen Tasten auf dem Klavier. Oder anders ausgedrückt: Es gibt zwölf Töne, die sich immer und immer wiederholen (c, cis, d, dis, e, f, fis, g, gis, a, ais, h, c, …). Eine Oktave besteht also aus zwölf Halbtonschritten. Daraus ergibt sich wiederum, dass ein Halbtonschritt eine Erhöhung um einen Faktor von etwa 1,06 darstellt. Denn wenn man diese Zahl zwölf mal mit sich selbst multipliziert, erhält man die Zahl 2 – also ein Verdopplung.
Damit hast Du jetzt alles, was Du brauchst, um die restlichen Frequenzen zu berechnen. Du wirst jedoch feststellen, dass keine glatten Zahlen bei der Rechnung herauskommen, sondern ganz viele Kommazahlen. Deshalb sind die Werte in meiner Frequenztabelle auch gerundet.
Cool! Überprüfen wir das Ganze…
Frequenzanalyse
Laut meiner Tabelle hat das eingestrichene C eine Frequenz von 262 Hz. Um dies zu überprüfen, lade ich ein virtuelles Piano und spiele mit meinem MIDI-Keyboard ein eingestrichenes C. Dann lade ich einen simplen Spectrum Analyzer, mit dem ich die Frequenzanteile eines Tons angezeigt bekomme und stelle fest…
Screenshot: Voxengo Curve EQ in Cubase*
Huch!? In dem Sound sind ja noch ganz andere Frequenzen enthalten! Das liegt daran, dass sich fast jeder Klang aus mehreren Frequenzen zusammensetzt. Einzige Ausnahme ist die Sinuswelle, die aber nur synthetisch erzeugt werden kann. Derartige Sinustöne finden zum Beispiel Anwendung bei Hörtests, mit denen Du das Alter Deiner Ohren ermitteln kannst.
Über die sogenannte Fourier-Transformation ist es möglich, jeden Klang als eine Summe mehrerer Sinuswellen darzustellen. Dabei ist der tiefste Frequenzanteil der Grundton eines Klanges. Der Rest des Frequenzspektrums sind die dazugehörigen Obertöne. Sind die Frequenzen dieser Obertöne ganze Vielfache der Grundton-Frequenz, klingt ein Ton besonders rein und unverfärbt. Je willkürlicher die Verteilung des Grundtones und seiner Obertöne ist, desto weniger tonal ist ein Klang. Wir empfinden ihn dann als Geräusch und nicht als Ton. Ein Beispiel hierfür wäre das weiße Rauschen, das man mit dem Synthesizer erzeugen kann. Die Zusammensetzung der Obertöne kann auch dafür sorgen, dass wir ein Geräusch als Lärm empfinden (siehe Definition “Lärm”).
Schauen wir uns mit diesem Wissen das Bild oben mit der Frequenzanalyse nochmal an. Bei 262 Hz haben wir den stärksten Ausschlag. Dies ist auch die tiefste vorhandene Frequenz und demnach der Grundton. Die anderen Ausschläge sind die Obertöne. Die Werte aus unserer Frequenztabelle beziehen sich folglich jeweils auf den Grundton eines Klanges – also auf seinen niedrigsten Frequenzanteil.
Schön und gut. Aber wofür braucht man dieses Wissen nun?
Anwendungen
Ich möchte Dir im Folgenden ein paar Anwendungsbeispiele für die Frequenztabelle geben.
- Kickdrum-Tuning: Ich persönlich nutze die Tabelle am häufigsten dafür, um meine elektronischen Kickdrums so zu stimmen, dass sie in der passenden Tonart sind. Ein Beispiel: Stell Dir vor, Du hast ein Stück komponiert, das in C-Dur steht. Jetzt bietet es sich an, eine Kickdrum zu designen, deren Grundton auf C (Tonika), G (Dominante) oder F (Subdominante) liegt. Dies wirkt harmonisch einfach stimmig. Generell sind alle diatonischen (also tonleitereigenen) Töne in Ordnung. Nur solltest Du alle anderen vermeiden. Das wären im Beispiel von C-Dur die schwarzen Tasten am Keyboard.
- EQ: Auch beim EQing ist es vorteilhaft, wenn man die genaue Frequenz eines Klanges kennt. Nehmen wir mal an, wir haben ein Klavier aufgenommen, dessen tiefste gespielte Note ein eingestrichenes C ist. Dann hilft uns dies, um die perfekte Stelle für einen LowCut-Filter zu finden. Übrigens: Unser Gehirn ist in der Lage, nur anhand der Obertöne den dazugehörigen Grundton zu erkennen. Du kannst den Filter also sogar über 262 Hz ansetzen und der Klang wird trotzdem als C wahrgenommen!
- Nachbilden echter Klänge: In meinem allerersten Sound Design Tutorial habe ich Dir gezeigt, wie man den Klang eines Martinshorn im Synthesizer nachbildet. Hierfür war es wichtig, die Frequenzen in Noten umrechnen zu können, damit man sie im MIDI-Editor programmieren kann. Du siehst also, dass es beim Emulieren echter Klänge sehr hilfreich ist, die genauen Noten eines Klanges zu kennen.
Fazit
Eine Frequenztabelle ist ein praktisches Tool, das in keinem Tonstudio fehlen darf. Du benötigst es beispielsweise beim EQing, beim Tuning oder beim Nachbilden echter Klänge.
So. Und hier nun wie versprochen die Frequenztabelle zum Download im PDF-Format:
>> JETZT PDF-DATEI DOWNLOADEN <<
Hier findest Du alle kostenlosen Downloads auf meiner Webseite in einer Übersicht
*Affiliate Link
**Titelbild von Tadas Mikuckis auf Unsplash
Dir hat dieser Artikel gefallen? Du findest mich auch aufFacebook,Twitter,Instagram undYouTube. Wenn Du Dich für exklusive Inhalte interessierst, dann abonniere gerne meinen Newsletter.
Das könnte Dich auch interessieren:
Darth Vader Stimme, Lichtschwert und Co.: Die Geschichten dahinter
Sound Design Tutorial: Erstellen eines Martinshorns in NI Massive